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Application of SCF Perturbation Theory to the Study of 
Tetrahedrally Bonded Valence Crystals 
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The bond interaction method has been applied to the study of hexagonal and 
cubic BeO, BN and diamond. It is found that the CNDO method yields the 
cubic structure as the more stable forms of BN and diamond; the BeO calcula- 
tion did not converge well. It is concluded that the method is limited to the 
study of relatively covalent systems. 
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1. Introduction 

The SCF perturbation based treatment of inter-bond interactions described in 
Ref. [1] is applied here to the study of tetrahedrally bonded.valence crystals. The 
resultant theory in many ways resembles that of Coulson, Redei and Stocker [2], 
and may be regarded as an extension of their method to the SCF level of approxi- 
mation. 

The band structures of simple valence crystals have received considerable attention 
in recent years. Much of this work has been recently reviewed by Messmer [3]. 
However, little attention has been given to the relative stabilities of different but 
structurally related valence crystals of the same substance. For example, the 
Zincblende and Wurtzite structures both consist of tetrahedrally coordinated 
lattices, but differ in the conformation of their bonds, with the most noticable 
difference being in the conformation of their vicinal bonds. In the Zincblende 
lattice, all vicinal bonds are staggered with respect to one another, whereas in the 
Wurtzite structure eclipsed bonds are to be found. One consequence of this 
difference in the atomic arrangements is that the Madelung constant for the 
Wurtzite structure is slightly larger than that of the Zincblende [4]. Thus, it has 
been argued that ionic substances would tend to crystallize in the Wurtzite in 
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preference to the Zincblende structure E4]. For a partially ionic substance this 
would be offset by the existence of energetically unfavourable eclipsed bond 
interactions. The question then arises at what point in the electronegativity scale 
would one structure be favoured over the other? This is investigated here by 
calculating the binding energies of hexagonal and cubic BeO, BN and diamond 
lattices. 

It has been known for some time that BN can be prepared in either the cubic 
(F43m) or the hexagonal (P6a/mmc) modification [5, 6]; the cubic form being 
the one more easily prepared. The well known form of diamond is of course cubic, 
but recently a hexagonal modification has been recovered from meteorites [7]. 
BeO crystallizes in several modifications. The most stable appears to be a distorted 
Wurtzite lattice [8]. 

Molecular orbital calculations, based on the CNDO/2 approximation [9], are re- 
ported here for the cubic and hexagonal forms of BeO, BN and CC. Although 
recent calculations [10] on cubic diamond suggest that some modification to the 
CNDO parameters are necessary to obtain satisfactory band structures, the well 
documented success of the original theory in calculating the conformations of simple 
molecules argues that it can be meaningfully applied to the study of the relative 

stabilities of the above two lattices. 

2. Theory 

The objective here is the solution of the Roothaan SCF equations [11] for a 
valence crystal by an adaptation of the SCF perturbation method presented in 
Ref. [1] for saturated molecules. Following this method, the crystal basis set is 
chosen to consist of sp a hybrid functions centered on each atom of the lattice. 
These functions are ordered so that any two hybrid functions pointing along a 
common bond direction are adjacent in the basis set list. The purpose of this 
assumption is to partition the crystal Fock and density matrices into sub-matrices. 
Those sub-matrices that occupy the diagonal positions of the full matrix, and 
which therefore have elements between hybrids in the same bonds, are referred 
to as intra-bond sub-matrices. Those occupying off-diagonal positions are referred 
to as inter-bond sub-matrices. The basis of the method is to build up the full 
crystal density matrix, or as much of it as is needed, through the calculation of 
these density sub-matrices. 

Although the method is applicable at all levels of approximation to the complete 
SCF equations, it will be introduced here by means of the relatively simple CNDO/2 
approximation [9]. Under this approximation, the Fock matrix, F, for the valence 
electrons of the entire crystal are given by 

crystal 

Fm~=--O.5(A+I),~+O.5?AA--O.5P,,~YAA+ ~ (QB--ZB)?AB (1) 
B 

Fm.=flm.--0-5 Pro. TAB m # n  (2) 

Here A, land/3 are the usual CNDO/2 parameters and 7AB is the CNDO/2 average 
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Coulomb integral between atoms A and B. QB and Z R are the total electron 
population and the effective nuclear charge, respectively, of atom B; P is the 
crystal density matrix. 

Because of the chosen basis set order, the full crystal Fock and density matrices 
can be conveniently partitioned into sub-matrices. Thus, the intra-bond Fock 
sub-matrix for the R'th bond is given by 

crys ta l  

RRF,,,,= --0.5 (A+I)mm+0.5 7AA--O.5RRpmm "~AA-~- 2 (Qc-Zc)  YAC, 
C 

m = 1 or 2 (3) 

RRF12 : RRfll ,  2 - -  0"5RRp12 T A B  ( 4 )  

where the R'th bond connects lattice atoms A and B. Similarly, for the inter-bond 
Fock sub-matrix between bonds R and S: 

RSFm,=asfim,-o'5aspm, 7AC, m, n=  1 or 2 (5) 

where the hybrid orbitals labelled m and n are associated with lattice atoms A 
and C, respectively. Note, when R and S label different bonds attached to a 
common atom, A and C will be the same. 

3. The Inclusion of Crystal Symmetry 

The complete solution of the crystal SCF problem in principle requires, taking 
the symmetric character of P into account, the calculation of ~Nb(N b + 1) density 
sub-matrices; N b is the total number of bonds in the crystal. The presence of the 
extensive crystal symmetry of a perfect lattice greatly reduces this number. If, by 
virtue of this symmetry, all bonds are equivalent, a single reference bond may be 
arbitrarily selected and only its intra-bond density sub-matrix need be calculated 
together with all inter-bond sub-matrices between this bond and the remaining 

f J J / 
/ [ / 

,, 

Fig. 1. Portion of the cubic unit cell showing 
staggered bonds and sites I and II 

Fig. 2. Portion of hexagonal unit cell 
showing both the staggered and eclipsed 
bond pairs, sites I and II and bonds 1 and 2 
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bonds in the lattice. In practice, relatively few of these need be calculated since 
they decrease exponentially with separation from the reference bond. 

In addition to reducing the number of equations to be solved, crystal symmetry 
also leads to an appreciable simplification to the diagonal elements of the intra- 
bond Fock sub-matrices. The atomic electron populations, Q, of Eq. (3) are equal 
between translationally equivalent atoms and may therefore be factored from out 
of the Coulomb lattice sums. Thus, assuming there are only two site species, I and 
II, of Figs. 1 and 2 present, the diagonal elements of RRF a r e  given by: 

RRFmm = -- O. 5 ( A + / ) I I  -+" 0 .5  7AA - -  0.5RRPmm RR~ A A 

+ (QI - ZOFI, i + (QII - ZII)FL a (6) 

where it is assumed that atom A, on which rn is centered, occupies a site of type I, 
and 

II 

FI, II= ~ ~AB (7) 
B 

I 

ri,~ = ~ ~AB (S) 
B 

The summations in (7) and (8) are restricted to atoms occupying sites of type I and 
II, respectively, 

The inter-bond Fock sub-matrices remain unaffected by lattice symmetry under 
the CNDO approximation; essentially, they are already so simple that further 
simplification is unlikely. 

4. The Perturbation Fock Sub-Matrices 

Following the method given in Ref. [1], the crystal is treated at the zeroth order 
of perturbation as a collection of mutually polarizing but otherwise independent 
bonds; all Hamiltonian matrix elements neglected at this level of approximation 
are included as first-order terms. 

The zero order intra-bond Fock sub-matrix is given with this choice of perturbation 
by 

,, O ~RRp(0) .YAA_]_ ( Q l O ) _ z l ) ( f f l i _ F i , i i )  (9) RR~;'(O)~I 2 ---- - -  0 . 5  ( A  -[- I )  AI- 0 . 5 / A A  - -  u "  ~ ~mm 

R R p ( 2 ) _ _  RR R __ N K RRD(O)~, ( l O )  
~ 1 2  - -  P 1 2  v . . , ,  ~t 1 2 ) , A B  

Use has been made in the derivation of this equation of the fact that the overall 
neutrality of the crystal requires 

Q~O)_ Zi ~_ Ql0)_ Zi I = 0 (11) 

By definition, all zero order inter-bond sub-matrices are zero. 

RSF(~ R = S  (12) 

All remaining Hamiltonian matrix elements not included at the zeroth order, 
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together with the contributions from their induced changes in P, are included in 
the first order Fock sub-matrices. 

All contributions from the one and two electron matrices have been included 
for the intra-bond Fock sub-matrices at the zero order. Since, under the CNDO 
approximation, there are no electron repulsion terms involving inter-bond density 
sub-matrices, RRF(1)=0 at this level of approximation. Higher order intra-bond 
Fock sub-matrices will not in general be zero, since first order inter-bond inter- 
actions lead to second and higher order bond polarizations. These changes in the 
intra (and inter) bond density sub-matrices have to be made self consistent through 
the solution of the SCF perturbation equation at the corresponding order. 

R S F ( 1 ) = R S I ~  - - D  r RSp(1)  (13) mm rmn . . . .  mn RS~)AB 

where RS~A ~ is the CNDO Coulomb integral between atoms A and B of bonds 
R and S, respectively. 

All of the crystal Hamiltonian matrix elements have now been included in the 
calculation, but higher order Fock sub-matrices arise through higher order 
induced changes in the density matrix, P. Thus for x > 1 

R R F ( x ) - -  - - 0 . 5  Rgl>(x)~ -L I~(x ) (F  _ r  ~ (14) 
m m - -  ~ m m l A A "  ~ I  ~---I, I ~I ,  II/ 

where use has been made of the charge conserving relation 

Q(X)"q (x ) -o  all X>O (15) 1 - -  ~I I  - -  

"SFLX2= - 0 . 5  RSP~2 RSTA B X> 1 (16) 

here R may equal S if m does not equal n. 

The density sub-matrices may be calculated iteratively from these equations by 
the SCF perturbation method presented in Ref. [12]. 

5. The Convergence of the Electrostatic Contributions to ~tRF 

The SCF perturbation calculations based on Eqs. (8) and (14) for RRF converge 
well when both lattice sites are occupied by atoms of the same species. However, 
for polar crystals the zero order equations appear to have multiple solutions, none 
of which refine well at the higher orders and, moreover, depend on the summation 
radius chosen for F. This behaviour persists, but to a lesser extent, even when a 
rather large summation radius of about 40 A, is used. To overcome this difficulty, 
stabilize the perturbation calculations and reduce the computation time, the 
Coulomb lattice sums are replaced by Madelung constants. This can be effected 
by rewriting the Coulomb integral 7 as 

~)AB : l -[- gAB (17)  
/~AB 

where RAB is the distance between atoms A and B and g is an exponential function 
[13]. Since gAB decreases exponentially with distance, it yields an absolutely 
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converger~t series when summed over an infinite lattice. The Coulomb lattice 
sums, F, may be written as 

I 

FII = E '  1 + RR~A A+ E t (~RS (18) 
s R~s s 

on substitution for r in Eqs. (8) and (14) yields 

RRp(0)__I 1 ---- -- 0.5 ( [+ /1 )11  + 0.5 RR'})AA -- 0.5 RRp(IO 1) RR~)AA + (O{A 0 , - / A )  

• + + 4 , , -  at .}  (I 9) 

RRF(O)-- - -0 .5  (A + I ) 2 2  + 0 . 5  RRyBB--0.5 RRID(O) RR~, ..t.. {t.)(0)__ ZB ) * 22 -- --22 fBB ~ \~s 

X {M/'c 0 + RR~B B +AII ' It --  AII, I} (20) 

where the bond R is between atoms A and B of sites I and II, respectively. M is the 
dimensionless Madelung constant of the crystal, "c o is the shortest bond length 
and A is a lattice sum of 3's: 

1 

AII= E '  ~AC (2l) 
C 

And for the higher orders 

RRF~)  = - -  O. 5 Rap(x) RR (~,) RR "11  YAA+ QA {M/%+ TAA+AI,I--ALII) (22) 

RRF(zX2)= - -0 .5  .ltp(x)_22 RRyBB + Q~){M/% + RRyB B + d i i j l - -  All j }  (23) 

All of the calculations reported in this paper based on the above formulation ofF. 
The two Madelung constants necessary for the calculatiorm on the cubic and 
hexagonal lattices, respectively, were taken from Ref. [4]. 

6. Energy Calculation 

The total energy of the crystM, IV, is given by 

1 1 ZAZ  B 
W = -  m ~n P~ . {H , . .+Fm.}+  5 A ~  RAB (24) 

On partitioning all of these matrices into sub-matrices and taking the crystal 
symmetry into account, equation reduces to 

14/= aaP,~.("RH,~ F,~.) + .Sp, . .  
/ = t  . = t  Z S m=t n=t  

N x (RsH,.. + RsF,..) + 
RAB B 

where N and N b are, respectively, the number of atoms and bond in the crystal. 
Since there are twice as many bonds as there are atoms, 

N b = 2 N  
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and the average energy per bond, W, is given by 

Pmn( Hmn + rm~) + ~B 
This expression may be expanded order by order and the nuclear repulsion 
incorporated into the zero order contribution to yield electrostatic energy con- 
tribution in terms of the Madelung constant for the crystal under investigation. 

The calculations reported here included contributions from all orders up to and 
including the third. 

7. Structural Data for the Calculations 

All of the calculations reported here are based on the cubic or hexagonal lattices 
shown in Figs. 1 and 2 and using the unit cell data given in Table 1. The data for 
the hexagonal BN has been rounded slightly to ensure an exact tetrahedral nearest 
neighbour environment within the lattice. Thus the experimentally reported ao and 
c o were changed from 2.55 and 4.20 A to 2.5562 and 4.1742, respectively. 

Table 1. Assumed unit cell dimensions 

Cubic Hexagonal Bond length 

Substance a 0 a o c o r o 

Diamond 3.5668 2.5221 4.1185 1.5444 
BN 3.615 2.556 4.1742 1.5653 
BeO 3.8235 2.7036 4.4150 1.6556 

The basis set for all of the calculations consists of four sp 3 hybrid functions, built 
from the corresponding Slater 2s and 2p orbitals, on each atom pointing directly 
towards the four nearest neighbours. A list of these functions is set up within the 
reference unit cell in terms of a list of the unit cell atoms and the bond vectors 
which connect them. The next step in the calculation after the basis set has been 
organized is the construction of a list of all pairs and triplets of bonds between 
the reference bonds of the origin unit cell and the remainder of the lattice. This 
task is quite time consuming, but fortunately it need be undertaken only once for 
each lattice structure. Moreover, because of lattice symmetry only one reference 
bond is required for the cubic lattice and only two for the hexagonal lattice. The 
bond pair list for the present calculation was taken to include next nearest neighbour 
bonds. The list of triplets of bonds is constructed by a double scan of the list of 
bond pairs. 

The A lattice sums of Eqs. (19-23) were taken to include all atoms within a sphere 
of 10 A of a reference atom. This was found to be sufficient since these sums are 
strongly convergent. 



46 M. H a s h i m o t o  a n d  D.  P. S a n t r y  

8. Results 

The environment of the chemical bonds in the hexagonal and cubic crystals are 
different. Each chemical bond has twenty-four nearest neighbour interactions in 
the crystal. These sets of interactions are the same for all bonds in the infinite 
cubic lattice and consist of the following interactions: 

6H 1 + 6H18 o + 12H6o (27) 

where H 1 is the interaction between two bonds originating from the same atom, 
and H~ is the interaction between two vicinal bonds with an azimuthal angle ~b. 
There are two sets of bonds, 1 and 2 of Fig. 1, in the hexagonal lattice and these are 
distinguished by their interactions with the remainder lattice. The 24 nearest 
neighbour interactions for bond I are the same as those listed in Eq. (27) for the 
cubic case. Bond II has the following contributions: (28) 

6H1 + 4H18 o + 2H0 + 8H6o + 4H12 o 

The interbond energies, calculated from RSp(~), listed in Table 2 suggest that these 
interactions would favour the cubic over the hexagonal structure. The calculation 
of the total crystal energy per bond for both structures of diamond does yield the 
cubic modification as the more stable. 

Tab le  F i r s t  o r d e r  i n t e r - b o n d  energ ies  fo r  d i a m o n d  a n d  B N  

C r y s t a l  W I Wo W60 W120 m180 

C - C  - 0 . 2 1 4 4 •  - 2  - 0 . 2 8 0 1 •  - 2  - 0 . 4 0 3 3 •  - 3  - 0 . 3 5 3 1 x 1 0  - z  - 0 . 1 0 6 5 •  - 1  

B - N  - 0 . 1 6 0 2 x 1 0  -1  - 0 . 1 2 3 4 •  - 1  - 0 . 4 3 5 8 •  - z  - 0 . 3 7 0 7 •  - 2  - 0 . 1 2 1 3 •  - 1  

In the case of the BN structures, the effect of the unfavourable inter-bond inter- 
actions of the hexagonal lattice could be offset by an increased electrostatic 
contribution resulting from the slightly higher Madelung constant for this lattice. 
However, it turns out, under the CNDO approximation at least, that the net 
atomic charges are too small to achieve this effect, so that the cubic remains the 
predicted stable structure for this substance, Table 3. Thus, returning to the 
question raised in the introduction concerning the electrostatic stabilization of 
the hexagonal relative to the cubic lattice, it is apparent that a large measure of 

Table 3. C a l c u l a t e d  net  a t o m i c  p o p u l a t i o n s  a n d  la t t ice  energies  (a .u .)  fo r  h e x a g o n a l  

a n d  c u b i c  d i a m o n d ,  B N  a n d  B e O  

C C  B N  B e O  

C u b i c  Hex .  C u b i c  Hex .  C u b i c  Hex .  

Q1 0.0 0.0 0 .3828  0 .3872  0 .6559 0 .6675 

W~.te r - 0 . 0 6 5 6  0 .0633  - 0 . 1 2 6 8  - 0 . 1 2 2 8  - 0 . 2 8 3 3  - 0 . 2 7 9 9  

WMA D 0.0 0 .0  --  0 .0203 --  0 .0208 --  0 .0563 --  0 .0584  

Wtot, l - 3 .6194 - 3 .6179 - 3 .9666 - 3 .9646 - 5 .0632 - 5 .0618 
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charge transfer is required to offset the disadvantage of  the eclipsed bonds in the 
former structure. The calculated atomic charges for BN, Table 4, are in close 
agreement with those reported by Philips [14] and by Coulson et al. [2]. 

Calculations were also undertaken for hexagonal and cubic BeO lattices, although 
there is no experimental evidence that this substance exists in the cubic form; one 
of the stable forms of  BeO, on the other hand, may be viewed as a strongly distorted 
cubic lattice. Unfortunately, the method did not work well and the results are 
onIy of  interest from a numerical point of  view. Although the individual SCF 
interactions for each order of the perturbation are strongly convergent, the cal- 
culated charge densities, Table 4, suggest that the perturbation series is not. This 

could perhaps be remedied by the selection of a more ionic solution for the zero 
order starting bond orbitals. In any event, the method as described here seems to 
be limited to relatively covalent crystals. 

Table 4. Zero, second and third order atomic BN BeO 
electron populations for BN and BeO. The 
first order densities are zero as a consequence QI0~ 0.0171 0.1294 
of the choice of perturbation and diamond Q(2) 0.4541 0.2018 
densities are zero as a result of crystal Q~3) -0.0840 0.3363 
symmetry 

9. Summary and Conclusions 

The bond interaction method has been extended to the study of three-dimensional 
valence crystals. The method appears to work well for covalent and slightly ionic 
systems, but shows evidence of divergence in the perturbation series when applied 
to relatively ionic systems such as BeO. This problem could, perhaps, be remedied 
by the substitution of  a more ionic zero order starting solution. As it stands, 
however, the method is limited to the study of covalent and partially ionic crystals. 

The CNDO/2 method found the cubic uniformly more stable than the hexagonal 
structure for all three crystals studied. These results are in agreement with experi- 
ment in the cases of diamond and BN in as far as the cubic crystals are more 
easily prepared than the hexagonal. In the case of BeO, the slightly distorted 
hexagonal lattice seems to be the most stable modification. Comparison between 
experiment and theory is meaningless in this case since the perturbation expansion 
did not reach a satisfactory level of convergence. 

Although limited to the study of relatively covalent solids, the method nonetheless 
has a wide range of applicability since many important  substances, SiC for example, 
fall in this category. Moreover, this SCF perturbation approach lends itself well 
to the study of lattice impurities and defects. In this regard, it has the advantage 
over cluster calculations of providing results at a well defined level of  approximation. 
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